Multistable inflatable origami structures at the meter scale

  • 1.

    Pellegrino, S. Structures implementable in engineering (Springer-Verlag, 2014).

  • 2.

    You, Z. & Pellegrino, S. Folding bar structures. Int. J. Solids Struct. 34, 1825–1847 (1997).

    Google Scholar Article

  • 3.

    Liu, Y., Du, H., Liu, L. & Leng, J. Shape memory polymers and their composites in aerospace applications: a review. Smart Mater. Struct. 2. 3, 023001 (2014).

    ADS CAS Google Scholar Article

  • 4.

    Puig, L., Barton, A. and Rando, N. A review of large structures deployed for astrophysics missions. Acta Astron. 67, 12-26 (2010).

    Google Scholar Article

  • 5.

    Zhao, J.-S., Chu, F. and Feng, Z.-J. Mechanism theory and application of SLE-based implementable structures. Mech. Mach. Theory, 44, 324-335 (2009).

    Google Scholar Article

  • 6.

    Mira, LA, Thrall, AP & De Temmerman, N. Deployable scissor spring for transition shelters. Autom. equi. 43, 123–131 (2014).

    Google Scholar Article

  • 7.

    Thrall, AP, Adriaenssens, S., Paya-Zaforteza, I. & Zoli, TP Link-based mobile bridges: design methodology and three new forms. Eng. Struct. 37, 214–223 (2012).

    Google Scholar Article

  • 8.

    Arnouts, LIW, Massart, TJ, De Temmerman, N. & Berke, P. Structural optimization of a flip-flop scissor module. Into the Proc. IASS Annual Symposium 2019 – Structural Membranes 2019 (ed. Lazaro, C. et al.) (2019).

  • 9.

    García-Mora, CJ & Sánchez-Sánchez, J. Geometric method for the design of flip-flops and non-flip-flops developed by straight scissors based on the convergence surface. Mech. Mach. Theory 146, 103720 (2020).

    Google Scholar Article

  • 10.

    Cadogan, D., Stein, J. & Grahne, M. Inflatable composite habitat structures for lunar and Mars exploration. Acta Astron. 44, 399-406 (1999).

    Google Scholar Article

  • 11.

    Block, J., Straubel, M. & Wiedemann, M. Ultralight implementable arms for solar sails and other large gossamer structures in space. Acta Astron. 68, 984–992 (2011).

    Google Scholar CAS article

  • 12.

    Sifert, E., Reyssat, E., Bico, J. & Roman, B. Programming rigid inflatable shells from flat pattern fabrics. Soft matter 16, 7898–7903 (2020).

    Google Scholar ADS article

  • 13.

    Siéfert, E., Reyssat, E., Bico, J. & Roman, B. Pneumatic elastomers of morphic form of bio inspiration. Nat. Mater. 18, 16692–16696 (2019).

    Google Scholar Article

  • 14.

    Usevitch, NS et al. An unopened soft isoperimetric robot. Science. Robot. 5, eaaz0492 (2020).

    Google Scholar Article

  • 15.

    Skouras, M. et al. Design of inflatable structures. ACM Trans. Graph. 33, 63 (2014).

    Google Scholar Article

  • 16.

    Rus, D. & Tolley, MT Design, manufacture and control of origami robots. Nat. Pr. Mater. 3, 101-112 (2018).

    Google Scholar ADS article

  • 17.

    Onal, CD, Wood, RJ & Rus, D. An origami-inspired approach to robot worms. IEEE ASME Trans. Mechatronics. 18, 430–438 (2013).

    Google Scholar Article

  • 18.

    Onal, CD, Tolley, MT, Wood, RJ & Rus, D. Origami-inspired printed robots. IEEE ASME Trans. Mechatronics. 20, 2214-2221 (2015).

    Google Scholar Article

  • 19.

    Li, S. et al. A soft origami gripper with origami “magic ball”. Into the 2019 International Conference on Robotics and Automation (ICRA) 7401–7408 (IEEE, 2019).

  • 20.

    Miskin, MZ et al. Bimorphs based on graphene for autonomous origami machines, of micron dimensions. Proc. Natl Acad. Science. United States of America 115, 466–470 (2018).

    ADS CAS Google Scholar Article

  • 21.

    Silverberg, JL et al. Using origami design principles to fold reprogrammable mechanical metamaterials. Science 345, 647–650 (2014).

    ADS CAS Google Scholar Article

  • 22.

    Dudte, LH, Vouga, E., Tachi, T. and Mahadevan, L. Curvature programming using origami fabrics. Nat. Mater. 15, 583–588 (2016).

    ADS CAS Google Scholar Article

  • 2. 3.

    The Filipov, ET, Tachi, T. and Paulino, GH Origami tubes were assembled into rigid but reconfigurable structures and metamaterials. Proc. Natl Acad. Science. United States of America 112, 12321–12326 (2015).

    ADS CAS Google Scholar Article

  • 24.

    Overvelde, JTB, Weaver, JC, Hoberman, C. and Bertoldi, K. Rational design of reconfigurable prismatic architectural materials. The nature 541, 347–352 (2017).

    ADS CAS Google Scholar Article

  • 25.

    Iniguez-Rabago, A., Li, Y. & Overvelde, JTB Exploring multistability in prismatic metamaterials by local action. Nat. Usually. 10, 5577 (2019).

    ADS CAS Google Scholar Article

  • 26.

    Seymour, K. et al. Implementable ballistic barrier based on origami. Into the Proc. Seventh International Meeting on Origami in Mathematics and Education 763–778 (2018).

  • 27.

    Del Grosso, A. & Basso, P. Adaptive skin structures. Smart Mater. Struct. 19, 124011 (2010).

    Google Scholar ADS article

  • 28.

    Tachi, T. in Origami 5 (eds Wang-Iverson, P. et al.) Ch. 20 (CRC Press, 2011).

  • 29.

    Zirbel, SA et al. The right thickness in origami-based implementable matrices. J. Mech. Of. 135, 111005 (2013).

    Google Scholar Article

  • 30.

    You, Z. & Cole, N. Implementable bi-stable self-locking arms. Into the 47th AIAA / ASME / ASCE / AHS / ASC Conference Structures, structural dynamics and materials AIAA 2006-1685 (ARC, 2006); https://arc.aiaa.org/doi/abs/10.2514/6.2006-1685.

  • 31.

    Lang., RJ A computational algorithm for origami design. Into the Proc. 12th Annual ACM Symposium on Computational Geometry 98–105 (1996); https://ci.nii.ac.jp/naid/80009084712/en/.

  • 32.

    Tomorrow, ED & Mitchell, JSB Touching the folded states of a rectangular piece of paper. Into the Proc. 13th Canadian Conference on Computational Geometry (CCCG 2001) 73-75 (2001).

  • 33.

    Demaine, ED & Tachi, T. Origamizer: a practical algorithm for folding any polyhedron. Into the Proc. 33rd International Symposium on Computational Geometry (SoCG 2017) 34: 1–34: 15 (2017).

    MATH Google Scholar

  • 34.

    Martinez, RV, Fish, CR, Chen, X. & Whitesides, GM Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators. Adv. Funct. Mater. 22, 1376–1384 (2012).

    Google Scholar CAS article

  • 35.

    Li, S., Vogt, DM, Rus, D. & Wood, RJ Artificial muscles inspired by origami with fluids. Proc. Natl Acad. Science. United States of America 114, 13132–13137 (2017).

    ADS CAS Google Scholar Article

  • 36.

    Kim, W. et al. Extensible origami bio-inspired dual-morphing. Science. Robot. 4, eaay3493 (2019).

    Google Scholar Article

  • 37.

    Kamrava, S., Mousanezhad, D., Ebrahimi, H., Ghosh, R. & Vaziri, A. Origami-based cellular metamaterial with auxetic, bistable and self-blocking properties. Science. representative. 7, 46046 (2017).

    ADS CAS Google Scholar Article

  • 38.

    Hanna, B., Lund, J., Lang, R., Magleby, S. & Howell, L. Waterbomb base: a symmetrical single-tipped origami mechanism. Smart Mater. Struct. 2. 3, 094009 (2014).

    Google Scholar ADS article

  • 39.

    Cai, J., Deng, X., Ya, Z., Jian, F. & Tu, Y. The flip-flop behavior of the Kresling-patterned origami cylindrical structure. J. Mech. Of. 137, 061406 (2015).

    Google Scholar Article

  • 40.

    Silverberg, JL et al. Origami structures with a critical transition to bistability resulting from hidden degrees of freedom. Nat. Mater. 14, 389-393 (2015).

    ADS CAS Google Scholar Article

  • 41.

    Waitukaitis, S., Menaut, R., Gin-ge Chen, B. & van Hecke, M. Origami multistability: from single tips to metasheets. Physical. Pr. Lett. 114, 055503 (2015).

    Google Scholar ADS article

  • 42.

    Yasuda, H. & Yang, J. Reentrant origami metamaterials with Poisson negative ratio and bistability. Physical. Pr. Lett. 114, 185502 (2015).

    ADS CAS Google Scholar Article

  • 43.

    Reid, A., Lechenault, F., Rica, S. & Adda-Bedia, M. Geometry and design of origami bellows with tunable response. Physical. Rev. E 95, 013002 (2017).

    Google Scholar ADS article

  • 44.

    Faber, JA, Arrieta, AF & Studart, AR Bio-inspired spring origami. Science 359, 1386–1391 (2018).

    ADS CAS Google Scholar Article

  • 45.

    Dolciani, Member of Parliament, Donnelly, AJ and Jurgensen, RC Modern geometry, structure and method (Houghton Mifflin, 1963).

  • 46.

    Connelly, R. Stiffness of polyhedral surfaces. Maths. magus. 52, 275-283 (1979).

    Google Scholar MathSciNet article

  • 47.

    Connelly, R., Sabitov, I. & Walz, A. Bellows conjecture. Contrib. Algebra. Geom. 38, 1-10 (1997).

    MathSciNet MATH Google Scholar

  • 48.

    Mackenzie, D. Polyhedra may bend, but not breathe. Science 279, 1637–1637 (1998).

    Google Scholar CAS article

  • 49.

    Chen, Y., Feng, H., Ma, J., Peng, R. & You, Z. Origami with symmetrical water pump. Proc. R. Soc. A 472, 20150846 (2016).

    Article ADS MathSciNet Google Scholar

  • 50.

    Paulino, GH & Liu. K. Nonlinear mechanics of non-rigid origami: an efficient computational approach. Proc. R. Soc. A 473, 20170348 (2017).

  • Source