Pellegrino, S. Structures implementable in engineering (Springer-Verlag, 2014).
You, Z. & Pellegrino, S. Folding bar structures. Int. J. Solids Struct. 34, 1825–1847 (1997).
Liu, Y., Du, H., Liu, L. & Leng, J. Shape memory polymers and their composites in aerospace applications: a review. Smart Mater. Struct. 2. 3, 023001 (2014).
Puig, L., Barton, A. and Rando, N. A review of large structures deployed for astrophysics missions. Acta Astron. 67, 12-26 (2010).
Zhao, J.-S., Chu, F. and Feng, Z.-J. Mechanism theory and application of SLE-based implementable structures. Mech. Mach. Theory, 44, 324-335 (2009).
Mira, LA, Thrall, AP & De Temmerman, N. Deployable scissor spring for transition shelters. Autom. equi. 43, 123–131 (2014).
Thrall, AP, Adriaenssens, S., Paya-Zaforteza, I. & Zoli, TP Link-based mobile bridges: design methodology and three new forms. Eng. Struct. 37, 214–223 (2012).
Arnouts, LIW, Massart, TJ, De Temmerman, N. & Berke, P. Structural optimization of a flip-flop scissor module. Into the Proc. IASS Annual Symposium 2019 – Structural Membranes 2019 (ed. Lazaro, C. et al.) (2019).
García-Mora, CJ & Sánchez-Sánchez, J. Geometric method for the design of flip-flops and non-flip-flops developed by straight scissors based on the convergence surface. Mech. Mach. Theory 146, 103720 (2020).
Cadogan, D., Stein, J. & Grahne, M. Inflatable composite habitat structures for lunar and Mars exploration. Acta Astron. 44, 399-406 (1999).
Block, J., Straubel, M. & Wiedemann, M. Ultralight implementable arms for solar sails and other large gossamer structures in space. Acta Astron. 68, 984–992 (2011).
Sifert, E., Reyssat, E., Bico, J. & Roman, B. Programming rigid inflatable shells from flat pattern fabrics. Soft matter 16, 7898–7903 (2020).
Siéfert, E., Reyssat, E., Bico, J. & Roman, B. Pneumatic elastomers of morphic form of bio inspiration. Nat. Mater. 18, 16692–16696 (2019).
Usevitch, NS et al. An unopened soft isoperimetric robot. Science. Robot. 5, eaaz0492 (2020).
Skouras, M. et al. Design of inflatable structures. ACM Trans. Graph. 33, 63 (2014).
Rus, D. & Tolley, MT Design, manufacture and control of origami robots. Nat. Pr. Mater. 3, 101-112 (2018).
Onal, CD, Wood, RJ & Rus, D. An origami-inspired approach to robot worms. IEEE ASME Trans. Mechatronics. 18, 430–438 (2013).
Onal, CD, Tolley, MT, Wood, RJ & Rus, D. Origami-inspired printed robots. IEEE ASME Trans. Mechatronics. 20, 2214-2221 (2015).
Li, S. et al. A soft origami gripper with origami “magic ball”. Into the 2019 International Conference on Robotics and Automation (ICRA) 7401–7408 (IEEE, 2019).
Miskin, MZ et al. Bimorphs based on graphene for autonomous origami machines, of micron dimensions. Proc. Natl Acad. Science. United States of America 115, 466–470 (2018).
Silverberg, JL et al. Using origami design principles to fold reprogrammable mechanical metamaterials. Science 345, 647–650 (2014).
Dudte, LH, Vouga, E., Tachi, T. and Mahadevan, L. Curvature programming using origami fabrics. Nat. Mater. 15, 583–588 (2016).
The Filipov, ET, Tachi, T. and Paulino, GH Origami tubes were assembled into rigid but reconfigurable structures and metamaterials. Proc. Natl Acad. Science. United States of America 112, 12321–12326 (2015).
Overvelde, JTB, Weaver, JC, Hoberman, C. and Bertoldi, K. Rational design of reconfigurable prismatic architectural materials. The nature 541, 347–352 (2017).
Iniguez-Rabago, A., Li, Y. & Overvelde, JTB Exploring multistability in prismatic metamaterials by local action. Nat. Usually. 10, 5577 (2019).
Seymour, K. et al. Implementable ballistic barrier based on origami. Into the Proc. Seventh International Meeting on Origami in Mathematics and Education 763–778 (2018).
Del Grosso, A. & Basso, P. Adaptive skin structures. Smart Mater. Struct. 19, 124011 (2010).
Tachi, T. in Origami 5 (eds Wang-Iverson, P. et al.) Ch. 20 (CRC Press, 2011).
Zirbel, SA et al. The right thickness in origami-based implementable matrices. J. Mech. Of. 135, 111005 (2013).
You, Z. & Cole, N. Implementable bi-stable self-locking arms. Into the 47th AIAA / ASME / ASCE / AHS / ASC Conference Structures, structural dynamics and materials AIAA 2006-1685 (ARC, 2006); https://arc.aiaa.org/doi/abs/10.2514/6.2006-1685.
Lang., RJ A computational algorithm for origami design. Into the Proc. 12th Annual ACM Symposium on Computational Geometry 98–105 (1996); https://ci.nii.ac.jp/naid/80009084712/en/.
Tomorrow, ED & Mitchell, JSB Touching the folded states of a rectangular piece of paper. Into the Proc. 13th Canadian Conference on Computational Geometry (CCCG 2001) 73-75 (2001).
Demaine, ED & Tachi, T. Origamizer: a practical algorithm for folding any polyhedron. Into the Proc. 33rd International Symposium on Computational Geometry (SoCG 2017) 34: 1–34: 15 (2017).
Martinez, RV, Fish, CR, Chen, X. & Whitesides, GM Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators. Adv. Funct. Mater. 22, 1376–1384 (2012).
Li, S., Vogt, DM, Rus, D. & Wood, RJ Artificial muscles inspired by origami with fluids. Proc. Natl Acad. Science. United States of America 114, 13132–13137 (2017).
Kim, W. et al. Extensible origami bio-inspired dual-morphing. Science. Robot. 4, eaay3493 (2019).
Kamrava, S., Mousanezhad, D., Ebrahimi, H., Ghosh, R. & Vaziri, A. Origami-based cellular metamaterial with auxetic, bistable and self-blocking properties. Science. representative. 7, 46046 (2017).
Hanna, B., Lund, J., Lang, R., Magleby, S. & Howell, L. Waterbomb base: a symmetrical single-tipped origami mechanism. Smart Mater. Struct. 2. 3, 094009 (2014).
Cai, J., Deng, X., Ya, Z., Jian, F. & Tu, Y. The flip-flop behavior of the Kresling-patterned origami cylindrical structure. J. Mech. Of. 137, 061406 (2015).
Silverberg, JL et al. Origami structures with a critical transition to bistability resulting from hidden degrees of freedom. Nat. Mater. 14, 389-393 (2015).
Waitukaitis, S., Menaut, R., Gin-ge Chen, B. & van Hecke, M. Origami multistability: from single tips to metasheets. Physical. Pr. Lett. 114, 055503 (2015).
Yasuda, H. & Yang, J. Reentrant origami metamaterials with Poisson negative ratio and bistability. Physical. Pr. Lett. 114, 185502 (2015).
Reid, A., Lechenault, F., Rica, S. & Adda-Bedia, M. Geometry and design of origami bellows with tunable response. Physical. Rev. E 95, 013002 (2017).
Faber, JA, Arrieta, AF & Studart, AR Bio-inspired spring origami. Science 359, 1386–1391 (2018).
Dolciani, Member of Parliament, Donnelly, AJ and Jurgensen, RC Modern geometry, structure and method (Houghton Mifflin, 1963).
Connelly, R. Stiffness of polyhedral surfaces. Maths. magus. 52, 275-283 (1979).
Connelly, R., Sabitov, I. & Walz, A. Bellows conjecture. Contrib. Algebra. Geom. 38, 1-10 (1997).
Mackenzie, D. Polyhedra may bend, but not breathe. Science 279, 1637–1637 (1998).
Chen, Y., Feng, H., Ma, J., Peng, R. & You, Z. Origami with symmetrical water pump. Proc. R. Soc. A 472, 20150846 (2016).
Paulino, GH & Liu. K. Nonlinear mechanics of non-rigid origami: an efficient computational approach. Proc. R. Soc. A 473, 20170348 (2017).